

SENSOR SIGNAL CONDITIONERS

MAX1452 Serial Communications

The MAX1452 utilizes asynchronous serial data communication via a single-pin interface. This application note provides a detailed description of the serial communication system used and should be read in conjunction with the MAX1452 data sheet.

This application note describes the serial communications system used in the MAX1452, and it is best read in conjunction with the MAX1452 data sheet. It expands on the serial communications information contained in the data sheet and provides communication examples.

MAX1452 Digital Mode

The MAX1452 digital input/output (DIO) provides single-pin serial communications with internal control functions and memory. All command inputs flow into a set of 16 registers, which form the interface register set (IRS). Additional levels of command processing are provided by control logic, which takes its inputs from the IRS. A bidirectional 16-bit latch buffers data to and from the 16-bit calibration registers and internal (8-bit-wide) EEPROM locations. Figure 3 shows the relationship between the various serial commands and the MAX1452's internal architecture.

Communication Protocol

The DIO serial interface is used for asynchronous serial data communications between the MAX1452 and a host calibration test system or computer. The MAX1452 automatically detects the baud rate of the host computer when the host transmits the initialization sequence. Baud rates between 4800 and 38,400 can be detected and used. The data format is always 1 start bit, 8 data bits, and 1 stop bit. The 8 data bits are transmitted LSB first, MSB last. A weak pullup can be used to maintain a logic 1 on DIO while the MAX1452 is in digital mode. This is to prevent unintended 1 to 0 transitions on this pin, which would be interpreted as a communication start bit. Communications are allowed only when the Secure-LockTM byte is disabled (i.e., $CL[7:0] = 00_{HEX}$) or UNLOCK is held high.

Initialization Sequence

The first command byte sent to the MAX1452 after power-up or following receipt of the re-initialization command is used by the MAX1452 to learn the communication baud rate. The initialization sequence is a 1-byte transmission of 81 hex, as follows:

The start bit, shown in bold above, initiates the baud-rate synchronization. The 8 data bits 81 hex (LSB first) follow this and then the stop bit, also shown in bold above. The MAX1452 uses this sequence to calculate the time interval for a 1-bit transmission as a multiple of the period of its internal oscillator. The resulting number of oscillator clock cycles is then stored internally as an 8-bit number (BITCLK). Note that the device's power supply should be stable for a minimum period of 1ms before the initialization sequence is sent. This allows time for the power-on reset function to complete and DIO to be configured by the Secure-Lock byte or UNLOCK.

Re-Initialization Sequence

The MAX1452 provides for re-establishing or relearning the baud rate. The re-initialization sequence is a 1-byte transmission of FF hex, as follows:

When a serial re-initialization sequence is received, the receive logic resets itself to its power-up state and waits for the initialization sequence. The initialization sequence must follow the re-initialization sequence to re-establish the baud rate.

Serial Interface Command Format

All communication commands into the MAX1452 follow the format of a start bit, 8 command bits (a command byte), and a stop bit. The command byte controls the contents of the interface register set and comprises a 4-bit interface register set address (IRSA) nibble and a 4-bit interface register set data (IRSD) nibble. The IRS byte command is structured as follows:

$$IRS[7:0] = IRSD[3:0]$$
, $IRSA[3:0]$

All commands are transmitted LSB first. The first bit following the start bit is IRSA[0], and the last bit before the stop bit is IRSD[3], as follows:

Half of the register contents of the IRS are used for data hold and steering information. Data writes to two locations within the IRS cause immediate action (command execution). These locations are at addresses 9 and 15, and are the command register to internal logic and re-initialize commands, respectively. Table 9 shows a full listing of IRS address decoding.

Command sequences can be written to the MAX1452 as a continuous stream, for example, start bit, command byte, stop bit, start bit, command byte, stop bit, etc. There are no delay requirements between commands while the MAX1452 is receiving data.

Command Register to Internal Logic (CRIL)

A data write to the CRIL location (IRS address 9) causes immediate execution of the command associated with the 4-bit data nibble written. All EEPROM and calibration register Read and Write, together with EEPROM ERASE, commands are handled through the CRIL location. CRIL is also used to enable the MAX1452 analog output and to place output data (serial digital output) on DIO. Table 10 shows a full listing of CRIL commands.

Serial Digital Output

DIO is configured as a digital output by writing a Read IRS (RdIRS) command (5 hex) to the CRIL location. On receipt of this command, the MAX1452 outputs a byte of data, the contents of which are determined by the IRS pointer (IRSP[3:0]) value at location IRSA[3:0] = 8 hex. The data is output as a single byte, framed by a start bit and a stop bit. Table 12 lists the data returned for each IRSP address value.

Once the RdIRS command has been sent, all connections to DIO must be tri-stated to allow the MAX1452 to drive the DIO line. Following receipt of the RdIRS command, the MAX1452 drives DIO high after one byte time. The MAX1452 holds DIO high for a single bit time and then asserts a start bit by driving DIO low. The start bit is then followed by the data byte and a stop bit. Immediately following transmission of the stop bit, the MAX1452 will tri-state DIO, releasing the line. The MAX1452 will then be ready to receive the next command sequence one byte time after releasing DIO.

Note that there will be time intervals before and after the MAX1452 has sent the data byte when all devices on the DIO line will be tri-stated. It is recommended that a weak pullup be applied to the DIO line during these time intervals to prevent unwanted transitions. In applications where DIO and the analog output (OUT) are not connected, a pullup resistor should be connected permanently to DIO. If the MAX1452 DIO and OUT are

connected, then it is important that this common line not be loaded during analog measurements. Under this circumstance, a suitable sequence of events would be as follows:

- 1. Connect a pullup resistor to the DIO/OUT line (preferably using a relay).
- 2. Send the RdIRS command.
- 3. Tri-state the user connection (set to high impedance).
- 4. Receive data from the MAX1452.
- 5. Activate the user connection (pull DIO/OUT line high).
- 6. Release the pullup resistor.

Figure 1 shows an example transmit/receive sequence with the RdIRS command (59 hex) being sent and the MAX1452 responding with a byte value of 10 hex.

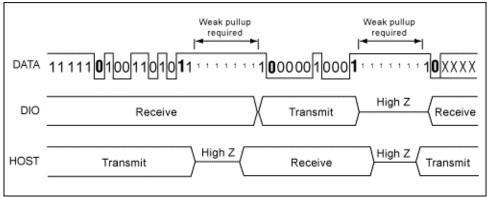


Figure 1. DIO output data format

Internal Clock Settings

Following initial power-up, or after a power reset, all of the calibration registers within the MAX1452 contain 00 hex and must be programmed. Note that, in analog mode, the internal registers are refreshed automatically from EEPROM.

When starting the MAX1452 in digital mode, special attention should be paid to the 3 CLK bits: 3MSBs of the configuration register. The frequency of the MAX1452 internal oscillator is measured during production testing, and a 3-bit adjustment (calibration) code is calculated and stored in the upper-3 bits of EEPROM location 161 hex (EEPROM upper-configuration byte). The MAX1452 internal clock controls all timing functions, including the signal-path gain, DAC functions, and communications. It is recommended that, while in digital mode, the configuration register CLK bits be assigned the values contained in EEPROM (the upper-configuration byte). The 3 CLK bits represent a two's complement number with a nominal clock adjustment of 9% per bit. Table 15 shows the codes and adjustment available.

Any change to the CLK bit values contained in the configuration register must be followed by the MAX1452 baud-rate learning sequence (the re-initialize and initialize commands). To maximize the robustness of the communication system during clock resetting, change the CLK bits by only 1LSB value at a time. The recommended setting procedure for the configuration register CLK bits is therefore as follows: Use a minimum baud rate of 9600 during the setting procedure to prevent potential overflow of the MAX1452 baud-rate counter with clock values near maximum.

The following example is based on a required CLK code of 010 binary:

- Step 1. Read the CLK bits (3MSBs) from EEPROM location 161 hex CLK = 010 binary.
- **Step 2.** Set the CLK bits in the configuration register to 001 binary.
- Step 3. Send the re-initialize command, followed by the initialize (baud-rate learning) command.
- **Step 4.** Set the CLK bits in the configuration register to 010 binary.
- Step 5. Send the re-initialize command, followed by the initialize (baud-rate learning) command.

The frequency of the internal oscillator can be checked at any time by reading the value of BITCLK[7:0]. This 8-bit number represents the number of internal oscillator cycles corresponding to one cycle (one bit time) of the communications baud rate.

Erasing and Writing the EEPROM

The internal EEPROM must be erased (bytes set to FF hex) prior to programming the desired contents. The MAX1452 is supplied in a nominally erased state except for byte 161 hex and bytes 16B hex. The 3MSBs of byte 161 hex contain the internal oscillator calibration setting. Byte 16B hex is set to 00 hex to allow serial communication regardless of the status of "UNLOCK."

When erasing the EEPROM, you first save the 3MSBs of byte 161 hex. Following erasure, these 3 bits must be rewritten, together with the Secure-Lock byte value of 00 hex. Failure to do this can cause the part to stop communicating. *Do not remove power from the device before rewriting these values*.

The internal EEPROM can be erased entirely with the ERASE command or erased partially with the PageErase command (see Table 10, CRIL command). It is necessary to wait 6ms after issuing an ERASE or PageErase command. Any attempt to communicate with the part or to interrupt power before 6ms have elapsed can produce indeterminate states within the EEPROM.

To erase a page in EEPROM (PageErase command): First load the required page number (see Table 1) into the IRS location IEEA[3:0]. Then send a CRIL PageErase command (79 hex).

To write a byte to EEPROM: Load IRS locations IEEA[9:8], IEEA[7:4], and IEEA[3:0] with the byte address (Address[9:0]). Load IRS locations DHR[7:4] and DHR[3:0] with the 8 data bits to be written (Data[7:0]). Send the EEPROM WRITE command to CRIL (19 hex).

To read a byte from EEPROM: Load IRS locations IEEA[9:8], IEEA[7:4], and IEEA[3:0] with the byte address (Address[9:0]). Send a READ EEPROM command to the CRIL register (49 hex); this loads the required EEPROM byte into DHR[7:0]. Load IRS location IRSP[3:0] with 00 hex (return DHR[7:0]). Send the READ IRSP command to the CRIL register (59 hex).

Multiplexed Analog Output

The MAX1452 provides the facility to output analog signals while in digital mode via the read analog (RdAlg) command. One byte time after receiving the RdAlg command, the internal analog signal determined by the ALOC[3:0] register (see Table 14) is multiplexed to OUT. The signal remains connected to OUT for the duration set by the ATIM[3:0] register. The ATIM function uses the communication baud rate as a timing basis. See Table 13 for details. At the end of the period determined by ATIM[3:0], the analog signal is disconnected from the analog output and OUT resumes a tri-state condition. The MAX1452 can receive further commands on DIO 1 byte after resuming a tri-state condition on OUT. Figure 2 illustrates the timing of this scheme.

The MAX1452 DIO is tri-stated for the duration that the analog output is active. This is to allow the OUT and DIO pins to be connected in parallel. When DIO and OUT are connected in parallel, the host computer must also tristate its communications connection to the MAX1452. This requirement will produce periods when all connections to DIO are tri-stated simultaneously, making it necessary to have a weak pullup resistor applied to DIO during these periods. See the "Serial Digital Output" section for more details.

A "continuous-output" mode is available for the analog output and is selected by setting ATIM[3:0] to F hex. This mode can be used only when DIO and OUT are separate. While in this mode and following receipt of the RdAlg command or any other command, DIO tri-states for a period of 32,769 byte times. Once this period has elapsed, DIO enters receive mode and will accept further command inputs. The analog output is always active while in continuous mode.

Note: The internal analog signals are not buffered when connected to OUT. Any loading of OUT while one of these internal signals is being measured is likely to produce measurement errors. *Do not load the OUT pin when reading internal signals, such as BDR, FSOTC, etc.*

Figure 2. Analog-output timing

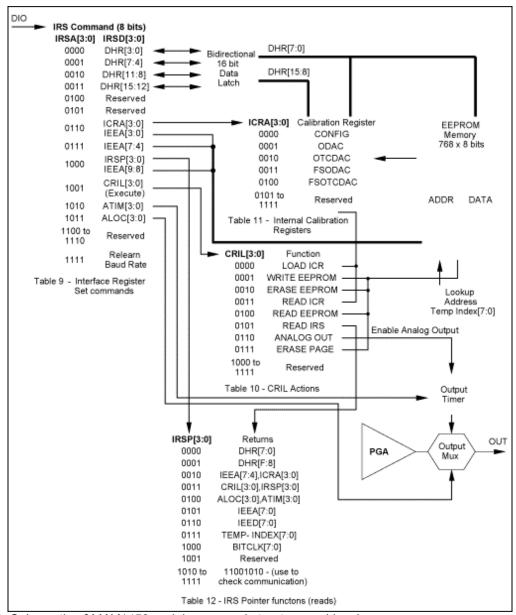


Figure 3. Schematic of MAX1452 serial command structure and hardware

Communication Command Examples

The following is a selection of examples of the command sequences for various functions within the MAX1452.

Example 1: Change the baud-rate setting, and check communications. Note: If communication with the MAX1452 is lost due to a system baud-rate change before sending the re-initialization command, a power reset will have to be applied in order to guarantee the initialization condition.

Command	Action			
FF hex	Re-initialize part ready for baud-rate learning.			
	Change system baud rate to new value.			
81 hex	Learn baud rate.			
F8 hex	Load 15 (F hex) to IRSP[3:0] register.			
59 hex	Read IRS.			
	Host computer must be ready to receive data on the serial line within one (baud-rate) byte time of			
	sending the Read IRS command. The MAX1452 will return CA hex (IRSP values of 10 to 15 are			
	configured to return CA hex for communication-checking purposes).			

Example 2: Read the lookup table pointer (TEMP-INDEX).

Command	Action		
78 hex	Load 7 to IRSP[3:0] register.		
59 hex	Read IRS.		
	Host ready to receive data within one byte time of sending the Read IRS command. The MAX1452		
	will return the current TEMP-INDEX pointer value.		

Example 3: Enable the BDR measurement on the OUT pin for 3.4-seconds duration with a 9600 baud rate.

I	r r r r r r r r r r r r r r r r r r r			
Command	Action			
1B hex	Load 1 (BDR measurement) to ALOC[3:0] register.			
CA hex	Load 12 to the ATIM[3:0] register: $(2^{12}+1) = 8/9600 = 3.4$ secs.			
69 hex	RdAlg			
	The DIO pin is tri-stated, and the OUT pin is connected internally to the BDR pin for a duration of			
	approximately 3.4secs.			

Example 4: Write 8C40 hex to the FSODAC register.

Example 11 Write 66 to new to the 186Bite register.			
Command	Action		
00 hex	Load 0 hex to the DHR[3:0] register.		
41 hex	Load 4 hex to the DHR[7:4] register.		
C2 hex	Load C hex to the DHR[11:8] register.		
83 hex	Load 8 hex to the DHR[15:12] register.		
36 hex	Load 3 (FSODAC) to the ICRA[3:0] register.		
09 hex	Ld ICR		
	8C40 hex is written to the FSODAC register.		

Example 5: Write 8C40 hex to the FSODAC lookup table location at TEMP-INDEX 40. This example uses the PageErase command to clear the relevant section of the EEPROM and assumes that none of the existing data in that section is required to be kept.

Command	Action		
A6 hex	Load A hex (page number corresponding to EEPROM locations 280 hex and 281 hex) to the IEEA[3:0]		
Au nex	register.		
79 hex	PageErase command.		
	Wait 6ms before sending any further commands.		
06 hex	Load 0 hex to the IEEA[3:0] register.		
87 hex	Load 8 hex to the IEEA[7:4] register.		
28 hex	Load 2 hex to the IEEA[9:8] (IRSP[3:0]) register.		
00 hex	Load 0 hex to the DHR[3:0] register.		
41 hex	Load 4 hex to the DHR[7:4] register.		
19 hex	Write EEPROM. 40 hex is loaded to EEPROM address 280 hex, which is the low-byte location		
19 liex	corresponding to a TEMP-INDEX pointer value of 40.		
16 hex	Load 1 to the IEEA[3:0] register. IEEA[7:4] and IEEA[9:8] already contain 8 and 2, respectively.		
C0 hex	Load C hex to the DHR[3:0] register.		
81 hex	Load 8 hex to the DHR[7:4] register.		
19 hex	Write EEPROM. 8C hex is loaded to EEPROM address 281 hex, which is the high-byte location		
19 1154	corresponding to a TEMP-INDEX pointer value of 40.		

TablesTable 1. EEPROM Memory Address Map

Page	1. EEPROM Memory A Low-Byte Address (Hex)	High-Byte Address (Hex)	TEMP- INDEX[7:0]	Contents
0	000	001	00	
0	03E	03F	1F	
1	040	041	20	
1	07E	07F	3F	
2	080	081	40	
2	0BE	0BF	5F	ODAC Lookup Table
3	0C0	0C1	60	ODAC Lookup Table
3	0FE	0FF	7F	
4	100	101	80	
4	13E	13F	9F	
	140	141	A0	
	15E	15F	AF to FF	
	160	161	-	Configuration
	162	163	-	Reserved
5	164	165	-	OTCDAC
3	166	167	-	Reserved
	168	169	-	FSOTCDAC
	16A	16B	-	Control Location
	16C	16D	-	
	17E	17F	=	52 General-Purpose User Bytes
	180	181	-	32 General-Fulpose Oser Bytes
6	19E	19F	=	
o [1A0	1A1	80	
	1BE	1BF	8F	
7	1C0	1C1	90	
/	1FE	1FF	AF to FF	
8	200	201	00	
0	23E	23F	1F	FSODAC Lookup Table
9	240	241	20	130DAC Lookup Table
J	27E	27F	3F	
A	280	281	40	
Λ.	2BE	2BF	5F	
В	2C0	2C1	60	
D	2FE	2FF	7F	

Table 2. Registers

. 45.5 = 1.109.515.5			
Register Description			
CONFIG	Configuration Register		
ODAC	Offset DAC Register		
OTCDAC	Offset Temperature Compensation DAC		
FSODAC	Full-Span Output DAC		
FSOTCDAC	Full-Span Output Temperature Compensation DAC		

Table 3. Configuration Register (CONFIG[15:0])

Field	Name	Description		
15:13	OSC[2:0]	Oscillator frequency setting. Factory preset; do not change.		
12	REXT	Logic '1' selects external R _{ISC} and R _{STC} .		
11	CLK1M EN	Logic '1' enables CLK1M output driver.		
10	PGA Sign	Logic '1' inverts INM and INP polarity.		
9	IRO Sign	Logic '1' for positive input-referred offset (IRO). Logic '0' for negative input-referred offset (IRO).		
8:6	IRO[2:0]	Input-referred offset (IRO) coarse offset adjustment.		
5:2	PGA[3:0]	Programmable-gain amplifier gain setting.		
1	ODAC Sign	Logic '1' for positive offset DAC output. Logic '0' for negative offset DAC output.		
0	OTCDAC Sign	Logic '1' for positive offset TC DAC output. Logic '0' for negative offset TC DAC output.		

Table 4. Input-Referred Offset (IRO[2:0])

IRO Sign, IRO[2:0]	Input-Referred Offset, Correction as % of VDD	Input-Referred Offset, Correction at VDD = 5VDC in mV
1,111	+1.25	+63
1,110	+1.08	+54
1,101	+0.90	+45
1,100	0.72	+36
1,011	0.54	+27
1,010	+0.36	+18
1,001	+0.18	+9
1,000	0	0
0,000	0	0
0,001	-0.18	-9
0,010	-0.36	-18
0,011	-0.54	-27
0,100	-0.72	-36
0,101	-0.90	-45
0,110	-1.08	-54
0,111	-1.25	-63

Table 5. PGA Gain Setting (PGA[3:0])

PGA[3:0]	PGA Gain (V/V)
0000	36
0001	48
0010	60
0011	72
0100	84
0101	96
0110	108
0111	120
1000	132
1001	144
1010	156
1011	168
1100	180
1101	192
1110	204
1111	216

Table 6. TEMP-INDEX Typical Values

Temperature	TEMP-INDEX[7:0]	
(°C)	Decimal	Hexadecimal
-40	20	14
25	65	41
85	106	6A
125	134	86

Table 7. EEPROM ODAC and FSODAC Lookup-Table Memory Map

TEMP- INDEX[7:0]	EEPROM Address ODAC, Low Byte and High Byte	EEPROM Address FSODAC, Low Byte and High Byte
$00_{ m hex}$	000_{hex} and 001_{hex}	200_{hex} and 201_{hex}
To	to	to
7F hex	0 FE $_{ m hex}$ and 0 FF $_{ m hex}$	2FE hex and 2FF hex
80 hex	100_{hex} and 101_{hex}	$1A0_{hex}$ and $1A1_{hex}$
to	to	to
AF hex	$15E_{hex}$ and $15F_{hex}$	1FE _{hex} and 1FF _{hex}

Table 8. Control Location (CL[15:8])

Field	Name	Description
15:8	CL[15:8]	Reserved.
7:0	CL[7:0]	Control location. Secure-Lock is activated by setting this to FF $_{\text{hex}}$, disabling DIO serial communications and connecting V_{OUT} to PGA output.

Table 9 IRSA Decoding

able 5 IRSA Decoding		
IRSA[3:0]	Description	
0000	Write Irsd[3:0] to Dhr[3:0] (Data-Hold Register).	
0001	Write Irsd[3:0] to Dhr[7:4] (Data-Hold Register).	
0010	Write Irsd[3:0] to Dhr[11:8] (Data-Hold Register).	
0011	Write Irsd[3:0] to Dhr[15:12] (Data-Hold Register).	
0100	Reserved.	
0101	Reserved.	
0110	Write Irsd[3:0] to Icra[3:0] or Ieea[3:0] (Internal Calibration Register Address	
	or Internal Eeprom Address Nibble 0).	
0111	Write Irsd[3:0] to Ieea[7:4] (Internal Eeprom Address, Nibble 1).	
1000	Write Irsd[3:0] to Irsp[3:0] or Ieea[9:8] (Interface Register Set Pointer Where	
1000	Irsp[1:0] Is Ieea[9:8]).	
1001	Write Irsd[3:0] to Cril[3:0] (Command Register to Internal Logic).	
1010	Write Irsd[3:0] to Atim[3:0] (Analog Time-Out Value on Read).	
1011	Write Irsd[3:0] to Aloc[3:0] (Analog Location).	
1100-1110	Reserved.	
1111	Write $Irsd[3:0] = 1111_{bin}$ to Any Irsa to Re-Initialize the Receive Serial Port.	

Table 10. CRIL Command Codes

CRIL[3:0]	Name	Description
0000	LdICR	Load Internal Calibration Register at address given in ICRA
0000	Laick	with data from DHR[15:0].
0001	EEPW	EEPROM Write of 8 bits from DHR[7:0].
0010	ERASE	Erase all of EEPROM.
0011	RdICR	Read Internal Calibration Register as pointed to by ICRA and
0011	Kuick	load data into DHR[15:0].
0100	RdEEP	Read Internal EEPROM location and load data into DHR[7:0].
0101	RdIRS	Read Interface Register Set Pointer IRSP[3:0].
	RdAlg	Output the multiplexed analog signal onto OUT the serial pin
0110		as an output. The analog location is specified in ALOC[3:0],
0110		and the duration (in byte times) that the signal is asserted onto
		the pin is specified in ATIM[3:0].
	PageErase	Page-erase the page of the EEPROM as pointed to by
0111		IEEA[9:6]. There are 64 bytes per page and thus 12 pages in
		the EEPROM.
1000-1111	Reserved	Reserved.

Table 11. ICRA Decode

ICRA[3:0]	Name	Description
0000	CONFIG	Configuration Register
0001	ODAC	Offset DAC Register
0010	OTCDAC	Offset Temperature Coefficient DAC Register
0011	FSODAC	Full-Scale Output DAC Register
0100	FSOTCDAC	Full-Scale Output Temperature Coefficient DAC Register
0101	-	Reserved. Do not write to this location (flash test).
0110 to 1111	-	Reserved. Do not write to this location.

Table 12. IRSP Decode

IRSP[3:0]	Returned value
0000	DHR[7:0]
0001	DHR[15:8]
0010	IEEA[3:0], ICRA[3:0] concatenated
0011	CRIL[3:0], IRSP[3:0] concatenated
0100	ALOC[3:0], ATIM[3:0] concatenated
0101	IEEA[7:0]
0110	IEED[7:0], EEPROM data byte
0111	TEMP-INDEX[7:0]
1000	BitClock[7:0]
1001	Reserved, internal flash test data
1010-1111	11001010 (CA _{hex})

Table 13. ATIM Definition

ATIM[3:0]	Duration of Analog Signal Specified in Byte Times (8 Bit Time)
0000	$2^{0} + 1 = 2$ byte times
0001	$2^1 + 1 = 3$ byte times
0010	$2^2 + 1 = 5 $ byte times
0011	$2^3 + 1 = 9$ byte times
0100	$2^4 + 1 = 17$ byte times
0101	$2^5 + 1 = 33$ byte times
0110	$2^6 + 1 = 65$ byte times
0111	$2^7 + 1 = 129$ byte times
1000	$2^8 + 1 = 257$ byte times
1001	$2^9 + 1 = 513$ byte times
1010	$2^{10} + 1 = 1025$ byte times
1011	$2^{11} + 1 = 2049$ byte times
1100	$2^{12} + 1 = 4097$ byte times
1101	$2^{13} + 1 = 8193$ byte times
1110	$2^{14} + 1 = 16,385$ byte times
1111	In this mode, OUT is continuous; however, DIO will accept commands after 32,769 byte times. Do not parallel-connect DIO and OUT.

Table 14. ALOC Definition

ALOC[3:0]	Analog Signal	Description
0000	OUT	PGA Output
0001	BDR	Bridge Drive
0010	ISRC	Bridge Drive Current Setting
0011	VDD	Internal Positive Supply
0100	VSS	Internal Ground
0101	BIAS5U	Internal Test Node
0110	AGND	Internal Analog Ground (approximately half of VDD)
0111	FSODAC	Full-Scale Output DAC
1000	FSOTCDAC	Full-Scale Output TC DAC
1001	ODAC	Offset DAC
1010	OTCDAC	Offset TC DAC
1011	VREF	Bandgap Reference Voltage (nominally 1.25V)
1100	VPTATP	Internal Test Node
1101	VPTATM	Internal Test Node
1110	INP	Sensor's Positive Input
1111	INM	Sensor's Negative Input

Table 15. CLK Code (3MSBs of Configuration Register)

CLK Code (bin)	Clock Adjustment
011	+27%
010	+18%
001	+9%
000	0
111	-9%
110	-18%
101	-27%

June 2001

MORE INFORMATION

MAX1452: QuickView -- Full (PDF) Data Sheet (296k) -- Free Sample
MAX1455: QuickView -- Full (PDF) Data Sheet (360k) -- Free Sample